
计算概论A—实验班

函数式程序设计
Functional Programming

胡振江，张 伟

北京大学 计算机学院
2025年09～12月

第14章：Foldables and Friends

Adapted from Graham’s Lecture slides

主要知识点：
Monoid、Foldable、Traversal

✴教材《Programming in Haskell》中关于Monoid的内容
与GHC的实现并不完全一致

✴我们按照GHC的实现进行讲解 (但GHC似乎又有变化了)

Semigroup
(半群)

Defined in Data.Semigroup

Monoid(幺半群) --Defined in Data.Monoid

 List Monoid
 instance Semigroup [a] where
 -- (<>) :: [a] -> [a] -> [a]
 (<>) = (++)

Defined in Data.Semigroup

 instance Monoid [a] where
 -- mempty :: [a]
 mempty = []

Defined in Data.Monoid

 ghci> [1,2,3] <> [4,5,6]
 [1,2,3,4,5,6]

 ghci> [1,2,3] <> mempty
 [1,2,3]

 Maybe Monoid
 instance Semigroup a => Semigroup (Maybe a) where
 --(<>) :: Maybe a -> Maybe a -> Maybe a
 Nothing <> b = b
 a <> Nothing = a
 Just a <> Just b = Just (a <> b)

Defined in Data.Semigroup

Defined in Data.Monoid
 instance Semigroup a => Monoid (Maybe a) where
 -- mempty :: Maybe a
 mempty = Nothing

 Int Monoid
✤A particular type may give rise to a monoid in a number of

different ways.

 instance Semigroup Int where
 -- (<>) :: Int -> Int -> Int
 (<>) = (+)

 instance Monoid Int where
 -- mempty :: Int
 mempty = 0

 instance Semigroup Int where
 -- (<>) :: Int -> Int -> Int
 (<>) = (*)

 instance Monoid Int where
 -- mempty :: Int
 mempty = 1

✴ But, multiple instance declarations of the same type for the same class
are not permitted in Haskell!

Sum Monoid -- Defined in Data.Semigroup Data.Monoid

 newtype Sum a = Sum a
 deriving (Eq, Ord, Show, Read)

 getSum :: Sum a -> a
 getSum (Sum x) = x

 instance Num a => Semigroup (Sum a) where
 -- (<>) :: Sum a -> Sum a -> Sum a
 Sum x <> Sum y = Sum (x + y)

 instance Num a => Monoid (Sum a) where
 -- mempty :: Sum a
 mempty = Sum 0

 ghci> import Data.Monoid

 ghci> mconcat [Sum 2, Sum 3, Sum 4]
 Sum 9

Product Monoid -- Defined in Data.Semigroup Data.Monoid

 newtype Product a = Product a
 deriving (Eq, Ord, Show, Read)

 getProduct :: Product a -> a
 getProduct (Product x) = x

 instance Num a => Semigroup (Product a) where
 -- (<>) :: Product a -> Product a -> Product a
 Product x <> Product y = Product (x * y)

 instance Num a => Monoid (Product a) where
 -- mempty :: Product a
 mempty = Product 1 ghci> import Data.Monoid

 ghci> mconcat [Product 2, Product 3, Product 4]
 Product 24

Bool Monoid -- Defined in Data.Semigroup Data.Monoid

 newtype All = All Bool
 deriving (Eq, Ord, Show, Read)

 getAll :: All -> Bool
 getAll (All x) = x

 instance Semigroup All where
 -- (<>) :: All -> All -> All
 All x <> All y = All (x && y)

 instance Monoid All where
 -- mempty :: All
 mempty = All True ghci> mconcat [All True, All True, All True]

 All True
 ghci> mconcat [All True, All True, All False]
 All False

Bool Monoid -- Defined in Data.Semigroup Data.Monoid

 newtype Any = Any Bool
 deriving (Eq, Ord, Show, Read)

 getAny :: Any -> Bool
 getAny (Any x) = x

 instance Semigroup Any where
 -- (<>) :: Any -> Any -> Any
 Any x <> Any y = Any (x || y)

 instance Monoid Any where
 -- mempty :: Any
 mempty = Any False ghci> mconcat [Any True, Any True, Any False]

 Any True
 ghci> mconcat [Any False, Any False, Any False]
 Any False

Foldable
✤ Fold provides a simple means of “folding up” a list using a monoid:

combine all the values in a list to give a single value.

 fold :: Monoid a => [a] -> a
 fold [] = mempty
 fold (x:xs) = x <> fold xs

Foldable
✤ Fold can also ‘folding up’ a tree using a monoid.

 data Tree a = Leaf a | Node (Tree a) (Tree a)
 deriving Show

 fold :: Monoid a => Tree a -> a
 fold (Leaf x) = x
 fold (Node l r) = fold l <> fold r

Foldable Class -- Defined in Data.Foldable

 class Foldable t where
 fold :: Monoid a => t a -> a
 foldMap :: Monoid b => (a -> b) -> t a -> b
 foldr :: (a -> b -> b) -> b -> t a -> b
 foldl :: (b -> a -> b) -> b -> t a -> b

instance Foldable [] -- Defined in Data.Foldable

 instance Foldable [] where
 -- fold :: Monoid a => [a] -> a
 fold [] = mempty
 fold(x:xs) = x <> fold xs

 -- foldMap :: Monoid b => (a -> b) -> [a] -> b
 foldMap _ [] = mempty
 foldMap f (x:xs) = f x <> foldMap f xs

 -- foldr :: (a -> b -> b) -> b -> [a] -> b
 foldr _ v [] = v
 foldr f v (x:xs) = x `f` (foldr f v xs)

 -- foldl :: (b -> a -> b) -> b -> [a] -> b
 foldl _ v [] = v
 foldl f v (x:xs) = foldl f (v `f` x) xs

instance Foldable Tree
 data Tree a = Leaf a | Node (Tree a) (Tree a)
 deriving Show

 instance Foldable Tree where
 -- fold :: Monoid a => Tree a -> a
 fold (Leaf x) = x
 fold (Node l r) = fold l <> fold r

 -- foldMap :: Monoid b => (a -> b) -> Tree a -> b
 foldMap f (Leaf x) = f x
 foldMap f (Node l r) = foldMap f l <> foldMap f r

 -- foldr :: (a -> b -> b) -> b -> Tree a -> b
 foldr f v (Leaf x) = x `f` v
 foldr f v (Node l r) = foldr f (foldr f v r) l

 -- foldl :: (b -> a -> b) -> b -> Tree a -> b
 foldl f v (Leaf x) = v `f` x
 foldl f v (Node l r) = foldl f (foldl f v l) r

Other Primitives and Defaults in Foldable

Foldable Class -- Defined in Data.Foldable

 class Foldable t where
 fold :: Monoid a => t a -> a
 foldMap :: Monoid b => (a -> b) -> t a -> b
 foldr :: (a -> b -> b) -> b -> t a -> b
 foldl :: (b -> a -> b) -> b -> t a -> b

Define Generic Functions using Foldable

 average :: Foldable t => t Int -> Int
 average ns = sum ns `div` length ns

 ghci> average [1..10]
 5
 ghci> average $ Node (Leaf 1) (Leaf 3)
 2

Define Generic Functions using Foldable

 import Data.Monoid (Any(Any, getAny), All(All, getAll))

 and :: Foldable t => t Bool -> Bool
 and = getAll . foldMap All

 or :: Foldable t => t Bool -> Bool
 or = getAny . foldMap Any

 ghci> and [True, False, True]
 False
 ghci> or $ Node (Leaf True) (Leaf False)
 True

Traversal
✤Motivation: generalizing map to deal with effects

 map :: (a -> b) -> [a] -> [b]
 map g [] = []
 map g (x:xs) = g x : map g xs

 traverse :: (a -> Maybe b) -> [a] -> Maybe [b]
 traverse g [] = pure []
 traverse g (x:xs) = pure (:) <*> g x <*> traverse g xs

Traversal

 dec :: Int -> Maybe Int
 dec n = if n > 0 then Just (n-1)
 else Nothing

 traverse :: (a -> Maybe b) -> [a] -> Maybe [b]
 traverse g [] = pure []
 traverse g (x:xs) = pure (:) <*> g x <*> traverse g xs

 ghci> traverse dec [1,2,3]
 Just [0,1,2]
 ghci> traverse dec [2,3,0]
 Nothing

Traversable -- Defined in Data.Traversable

 class (Functor t, Foldable t) => Traversable t where
 traverse :: Applicative f => (a -> f b) -> t a -> f (t b)

 instance Traversable [] where
 -- traverse :: Applicative f => (a -> f b) -> [a] -> f [b]
 traverse g [] = pure []
 traverse g (x:xs) = pure (:) <*> g x <*> traverse g xs

Traversable -- Defined in Data.Traversable

 class (Functor t, Foldable t) => Traversable t where
 traverse :: Applicative f => (a -> f b) -> t a -> f (t b)

 instance Traversable Tree where
 -- traverse :: Applicative f => (a -> f b) -> Tree a -> f (Tree b)
 traverse g (Leaf x) = Leaf <$> g x
 traverse g (Node l r) = Node <$> traverse g l <*> traverse g r

Other Primitives and Defaults in Traversable
 class (Functor t, Foldable t) => Traversable t where
 traverse :: Applicative f => (a -> f b) -> t a -> f (t b)

Other Primitives and Defaults in Traversable
 class (Functor t, Foldable t) => Traversable t where
 traverse :: Applicative f => (a -> f b) -> t a -> f (t b)

Other Primitives and Defaults in Traversable
 class (Functor t, Foldable t) => Traversable t where
 traverse :: Applicative f => (a -> f b) -> t a -> f (t b)

Other Primitives and Defaults in Traversable
 class (Functor t, Foldable t) => Traversable t where
 traverse :: Applicative f => (a -> f b) -> t a -> f (t b)

作业

14-1 Show how the Maybe type can be made foldable and
traversable, by giving explicit definitions for fold, foldMap, foldr,
foldl and traverse.

14-2 In a similar manner, show how the following type of binary trees
with data in their nodes can be made into a foldable and
traversable type:

 data Tree a = Leaf | Node (Tree a) a (Tree a)
 deriving Show

第14章：Foldables and Friends

Adapted from Graham’s Lecture slides

就到这里吧

