e LR a1
R *ﬁ_ﬁzr 1T

Functional Prcgrammlng

EARIL, 5K
IERKEF 1T EF MR
20255 09~12H

Adapted from Graham’s Lecture slides

2£14Z: Foldables and Friends

Egﬂ] IHR:

Monoid. Foldable. Traversal

* ##t {Programming in Haskell) H3xFMonoidlIAE
5 GHCRYSLIE AN STE—EX
X B 11z GHCRYSEIN H 1T IHAE ((BEGHCUEXR BT T)

: &
SeleFOUP class Semigroup a where # Source ™

(F5+)

Defined in Data.Semigroup

The class of semigroups (types with an associative binary operation).

Instances should satisfy the following:

Associativity
X <> (y <> z) = (x <> y) <> Z

Since: base-4.9.0.0

Minimal complete definition

(<>)

Methods

(<>) :: a -> a -> a infixr 6 # Source

Monoid(4 ¥ %) --Defined in Data.Monoid

@ Methods

class Semigroup a => Monoid a where # Source
The class of monoids (types with an associative binary operation that has mempty :: a # Source
an identity). Instances should satisfy the following:
Right identity |dentity of mappend
X <> mempty = X
Left identity mappend :: a -> a -> a # Source
mempty <> X = X
Associativity L. :
, An associative operation
X <> (y <> z2) = (x <> y) <> z(Semigroup law)
Concatenation NOTE: This method is redundant and has the default implementation
mconcat = foldr (<>) mempty mappend = (<>) since base-4.11.0.0.Should it be implemented
The method names refer to the monoid of lists under concatenation, but manually, since mappend is a synonym for (<>), it is expected that the
there are many other instances. two functions are defined the same way. In a future GHC release

, o mappend Wwill be removed from Monoid.
Some types can be viewed as a monoid in more than one way, e.qg. both

addition and multiplication on numbers. In such cases we often define

: , mconcat :: [a] -> a # Source
newtypes and make those instances of Monoid, e.g. Sum and Product.

NOTE: Ssemigroup is a superclass of Monoid since base-4.11.0.0. Fold a list using the monoid

Minimal complete definition For most types, the default definition for mconcat will be used, but

the function is included in the class definition so that an optimized
mempLy version can be provided for specific types.

List Monoid
[a]

Defined 1n Data.Semigroup

Defined 1n Data.Monoid

ghci> [1,2,3] <= [4,5,6]
[1.2.3.4.5.61

ghci> [1,2,3] <> mempty
[1,2,3]

Maybe Monoid

Nothing <> b Defined 1in Data.Semigroup
a <> Nothing

Just a <> Just b

a =>
Defined 1n Data.Monoid

mempty = Nothing

Int Monoid

o%* A particular type may give rise to a monoid in a number of
different ways.

mempty = 1

X But, multiple instance declarations of the same type for the same class
are not permitted in Haskell!

Sum Monoid -- Defined in Data.Semigroup Data.Monoid

a = Sum a

(’ ’ ’)

ghci> import Data.Monoid
getSum :: a —> a

getSum (Sum x) = X ghci> mconcat [Sum 2, Sum 3, Sum 4]

Sum 9

a => (a)
Sum X <> Sum y = Sum (x + y)
a => (a)

mempty = Sum 0

Product Monoid -- Defined in Data.Semigroup Data.Monoid

a = Product a

(’ ’ ’)

getProduct :: a —> a
getProduct (Product x) = Xx

a => (a)
Product x <> Product y = Product (x * y)

a => (a)

mempty = Product 1

ghci> import Data.Monoid

ghci> mconcat [Product 2, Product 3, Product 4]
Product 24

Bool Monoid -- Defined in Data.Semigroup Data.Monoid

= All
(Eq, Ord, :)

getALL :: —>
getAll (ALl x) = x

ALl x <> A1l v = A1l (x && v)

ghci> mconcat [All True, All True, All Truel
ALl True

ghci> mconcat [All True, All True, All False]
ALl False

mempty = ALL True

Bool Monoid -- Defined in Data.Semigroup Data.Monoid

= Any
(Eq, : :)

getAny :: —>
getAny (Any Xx)

X

Any X <> Any y = Any (x [] y)

mempty = Any False ghci> mconcat [Any True, Any True, Any False]
Any True

ghci> mconcat [Any False, Any False, Any False]
Any False

Foldable

% Fold provides a simple means of “folding up” a list using a monoid:
combine all the values In a list to give a single value.

fold :: a => [a] —> a

fold mempty
fold (x:xs) x <> fold xs

Foldable

% Fold can also ‘folding up’ a tree using a monoid.

= Leaf a | Node (a) (

fold :: a => a —> a

fold (Leaf x) = X

fold (Node 1 r) fold 1 <> fold r

Foldable Class -- Defined in Data.Foldable

Instance Foldable [| -- Defined in Data.Foldable

[]

fold = mempty
fold(x:xs) = x <> fold xs

foldMap _ = mempty
foldMap f (x:xs) = f x <> foldMap f xs

foldr V =V

foldr f v (x:xs) X f (foldr f v xs)

foldl _ v =V
foldl f v (x:xs) foldl f (v f x) Xxs

Instance Foldable Tree

= Leaf a | Node (a) (a)

fold (Leaf x) = x

fold (Node 1 r) fold 1 <> fold r

foldMap f (Leaf X
foldMap f (Node foldMap f L <> foldMap f r

foldr f (Leaf fov
foldr f (Node foldr f (foldr f v r) 1

(Leaf B
(Node foldl f (foldl f v 1) r

Other Primitives and Defaults in Foldable

null :: t a -> Bool > null []

length :: t a -> Int frue

elem :: Eqa=>a->t a->Bool > null (Leaf 1)

maximum :: Ord a => t a -> a ratse

minimum :: Ord a => t a -> a > length [1..10]

sum :: Num a => t a -> a 10

product :: Num a => t a -> a Zlength (Node (Leaf ’a’) (Leaf ’b’))
foldrl :: (a -=>a —>a) >t a —> a > foldri (+) [1..10]

foldll :: (a -=>a ->a) >t a —> a >

> foldll (+) (Node (Leaf 1) (Leaf 2))
toList :: t a —> [al 3

Foldable Class -- Defined in Data.Foldable

fold :: => T a —> a

foldMap :: b =>(a —>Db) > ta->>D
foldr :: (a = b —>b) = b >t a ->0>b
foldl :: (b —a —>b) = b >t a ->0>b

Minimal complete definition fold

foldMap f
foldMap | foldr toList

foldMap id
foldr (mappend . f) mempty
foldMap (\x -> [x])

Define Generic Functions using Foldable

average :: t => t —>
average ns = sum ns div

\

Llength ns

ghci> average [1..10]
3

ghci> average $ Node (Leaf 1) (Leaf 3)
2

Define Generic Functions using Foldable

Data.Monoid (, getAny), , getAll))

and :: t => ¢t —>
and = getAll . foldMap AlL

or . T =>T
or = getAny . foldMap Any

ghci> and [True, False, True]
False

ghci> or $ Node (Leaf True) (Leaf False)
True

Traversal

% Motivation: generalizing map to deal with effects

map :: (a —> b) —> [a] —> [b]
map g [] =]
map g (X:xs) = g X : map g XS

¥

traverse :: (a —> Maybe b) —> [a] —> Maybe [b]
traverse g [] = pure []
traverse g (x:xs) = pure (:) <k> g x <> traverse g Xs

Traversal

traverse :: (a —> Maybe b) —> [a] —> Maybe [b]
traverse g [] = pure []
traverse g (x:xs) = pure (:) <x> g X <*> traverse g Xs

Just (n-1)
Nothing

ghci> traverse dec [1,2,3]
Just [0,1,2]

ghci> traverse dec [2,3,0]
Nothing

Traversable -- Defined in Data.Traversable

(t, t) => t
traverse :: f=(a->Ffb) >ta->F (tb)

traverse ¢ pure
traverse g (x:xs) = pure (:) <> g X <*> traverse g XS

Traversable -- Defined in Data.Traversable

(t, t) => t
traverse :: f=(a->Ffb) >ta->F (tb)

traverse g (Leaf x) Leaf <$> g X
traverse g (Node 1 r) Node <$> traverse g L <x> traverse g r

Other Primitives and Defaults in Traversable

traverse ::

In addition to the traverse primitive, the Traversable class also includes the
following extra function and default definition:

sequenceA :: Applicative f => t (f a) -> f (t a)

SequenceA =— > sequenceA [Just 1, Just 2, Just 3]

Just [1,2,3]

> sequenceA [Just 1, Nothing, Just 3]
Nothing

> sequenceA (Node (Leaf (Just 1)) (Leaf (Just 2)))
Just (Node (Leaf 1) (Leaf 2))

> sequenceA (Node (Leaf (Just 1)) (Leaf Nothing))
Nothing

Other Primitives and Defaults in Traversable

traverse ::

In addition to the traverse primitive, the Traversable class also includes the
following extra function and default definition:

sequencelA :: Applicative £f => t (f a) > £ (t a)

sequenceA = traverse 1id > sequenceA [Just 1, Just 2, Just 3]
Just [1,2,3]

> sequenceA [Just 1, Nothing, Just 3]
Nothing

> sequenceA (Node (Leaf (Just 1)) (Leaf (Just 2)))
Just (Node (Leaf 1) (Leaf 2))

> sequenceA (Node (Leaf (Just 1)) (Leaf Nothing))
Nothing

Other Primitives and Defaults in Traversable

traverse ::

Conversely, the class declaration also includes a default definition for traverse
in terms of sequenceA, which expresses that to traverse a data structure using
an effectful function we can first apply the function to each element using fmap,
and then combine all the effects using sequenceA:

-— traverse :: Applicative f => (a -> £ b) -> t a -> f (t b)

Other Primitives and Defaults in Traversable

traverse ::

Conversely, the class declaration also includes a default definition for traverse
in terms of sequenceA, which expresses that to traverse a data structure using
an effectful function we can first apply the function to each element using fmap,
and then combine all the effects using sequenceA:

-— traverse :: Applicative f => (a -> £ b) >t a -> f (t b)
traverse g = sequenceA . fmap g

14-1 Show how the Maybe type can be made foldable and
traversable, by giving explicit definitions for fold, foldMap, foldr,
foldl and traverse.

14-2 In a similar manner, show how the following type of binary trees
with data in their nodes can be made into a foldable and
traversable type:

= Leaf | Node (a) a (a)

Adapted from Graham’s Lecture slides

2£14Z: Foldables and Friends

w2 X ENE

